

Investigation of a C++ Refactoring Tool

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin-La Crosse

La Crosse, Wisconsin

by

Ryan Brubaker

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

August, 2008

 ii

Investigation of a C++ Refactoring Tool

By Ryan Brubaker

We recommend acceptance of this manuscript in partial fulfillment of this candidate‟s

requirements for the degree of Master of Software Engineering in Computer Science. The

candidate has completed the oral examination requirement of the capstone project for the

degree.

____________________________________ _______________________

Dr. Kenny Hunt Date

Examination Committee Chairperson

____________________________________ _______________________

Dr. Kasi Periyasamy Date

Examination Committee Member

____________________________________ _______________________

Dr. David Riley Date

Examination Committee Member

 iii

ABSTRACT

Brubaker, Ryan, M., “Investigation of a C++ Refactoring Tool”, Master of Software

Engineering, August 2008, Advisors: Dr. Kenny Hunt, Dr. Kasi Periyasamy.

The practice of software refactoring has become a core issue in software engineering

today. Continually improving the structure of a program, while preserving its observable

behavior, extends the lifetime of a program and allows it to evolve to meet ever changing

and increasingly demanding requirements. This manuscript describes a prototype for a

tool, Automated Refactoring Tool (ART), which assists C++ developers in performing

refactorings that improve the structure and readability of their code. The tool provides a

C++ preprocessor along with a parser that generates a program database. The developer

can then manipulate the program elements within the database to perform refactorings on

the source code. The refactoring correctly updates the source code and preprocessing

directives to reflect the developer‟s intentions and outputs the updated source code to

disk. A simple GUI is provided that allows the developer to easily choose with program

element to refactor.

 iv

ACKNOWLDEGEMENTS

I would like to express my sincere thanks to my project advisors, Dr. Kenny Hunt and Dr.

Kasi Periyasamy, for their valuable guidance. Dr. Periyasamy provided valuable input in

helping formulate the project idea. Dr. Hunt provided valuable input throughout each

project phase, guiding the project to an acceptable conclusion. I especially want to thank

Dr. Hunt for the time he spent meeting with me to review project progress. I would also

like to thank William Opdyke, Donald Roberts, Alejandra Garrido and Edward Willink

for their valuable contributions to the academic literature. Each of their theses was

invaluable to me throughout this project. Finally, I would like to thank my wife Tiffany

for her patience and encouragement throughout this project. I truly appreciate the

sacrifices she made that allowed me to complete this degree.

 v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLDEGEMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

GLOSSARY .. viii

1. Introduction ... 1

1.1. Related Work .. 1

1.2. Project Goals ... 2

2. Requirements .. 4

2.1. Functional Requirements .. 5

2.1.1. Refactoring Support Requirements ... 5

2.1.2. Implicit Refactoring Requirements ... 6

2.1.3. Explicit Refactoring Requirements ... 7

2.1.4. Project Requirements .. 8

2.1.5. Preprocessor Requirements ... 9

2.1.6. Parser Requirements ... 10

2.2. Technical Difficulties and Risk Analysis ... 10

2.3. GUI Requirements .. 11

3. Design ... 14

3.1. Preprocessor .. 14

3.2. Parser... 16

3.3. Refactoring Engine ... 19

4. Implementation and Testing ... 21

5. Description of Refactoring with ART... 23

5.1. Preprocessor .. 23

5.1.1. Conditional Directives .. 23

5.1.2. Macros... 27

5.1.3. Include Directives ... 29

5.2. Parser... 30

5.3. Refactoring Engine ... 31

5.3.1 Rename Variable/Function ... 31

5.3.2 Encapsulate Variable Refactoring .. 34

6. Limitations .. 39

7. Continuing Work .. 41

8. Conclusion .. 42

9. Bibliography ... 43

 vi

LIST OF TABLES

Table Page

2.1. Refactoring Support Requirements...…………………………………………… 6

2.2 Implicit Refactoring Requirements……………………………………………… 7

2.3. Explicit Refactoring Requirements ……………………………………………... 7

2.4. Project Requirements……………………………………………………………. 8

2.5. Preprocessor Requirements…………………………………………………….. 9

2.6. Parser Requirements……………………………………………………………. 10

2.7. GUI Requirements……………………………………………………………… 12

3.1. Visitor Classes Used to Implement a Refactoring Engine……………………… 19

 vii

LIST OF FIGURES

Figure Page

2.1. Original GUI Prototype……………...………………………………………… 12

3.1. UML Class Diagram for a Preprocessor……………………………………… 15

3.2. UML Class Diagram for a Parser…………………………………………….. 17

3.3. UML Class Diagram for a Program………………………………………….. 18

3.4. UML Class Diagram for a Refactoring Engine………………………………. 19

4.1. AST Display Application ………………………………………………….….. 22

5.1. Sample of Multiple Declarations of a Program Element……………………… 23

5.2. Sample of an Incomplete Syntactic Construct………………………………… 25

5.3. Sample of a Fixed Incomplete Syntactic Construct…………………………… 25

5.4. Call to a Macro With Multiple Definitions……………………………………. 28

5.5. Expansion of a Macro With Multiple Definitions……………………………… 28

5.6. Example of a Macro Called from Two Different Contexts……………………. 29

5.7. Sample Program for Rename Variable Refactoring…………………………… 31

5.8. GUI Display for Rename Variable Refactoring Sample Program…………….. 32

5.9. Renaming a Variable…………………………………………………………… 32

5.10. Source Code Results for Rename Variable Refactoring……………………….. 33

5.11. GUI Results for Rename Variable Refactoring………………………………… 34

5.12. Sample Program for Encapsulate Variable Refactoring……………………….. 35

5.13. GUI Display for Encapsulate Variable Refactoring…………………………… 36

5.14. Source Code Results for Encapsulate Variable Refactoring…………………... 37

5.15. GUI Results for Encapsulate Variable Refactoring……………………………. 38

 viii

GLOSSARY

Abstract Syntax Tree (AST)

An Abstract Syntax Tree is a representation of the syntax of a program‟s source code,

where each node of the tree represents a construct in the grammar of the programming

language in which the program was coded.

Directed Graph

A graph in which the pair of vertices representing an edge are ordered.

Extended Backus-Naur Form Grammar (EBNF Grammar)

A notation capable of expressing context-free grammars used to formally describe

programming languages.

Integrated Development Environment (IDE)

An Integrated Development Environment is a software application that provides

comprehensive software functionality such as source code editing and compilation to

computer programmers.

LL Parser

A top-down parser that parses input from left-to-right and constructs a left-most

derivation of the input sentence.

Recursive Descent Parser

A top-down parser built from a set of procedures where each procedure implements one

of the production rules of the grammar. The structure of the resulting program mirrors

that of the grammar it parses.

Visitor Pattern

A software design pattern that separates an algorithm from the structure on which it

operates. This allows for the creation of new operations on the structure without

modifying the structure itself.

 ix

Waterfall Model

A software development model in which development is done in a sequential manner

with phases such as requirements analysis, design, implementation and testing.

1. Introduction

In his seminal book, Refactoring, Improving the Design of Existing Code, Martin

Fowler provides two definitions for the word refactoring:

 Refactoring (noun): a change made to the internal structure of software to make

it easier to understand and cheaper to modify without changing its observable

behavior.

 Refactoring (verb): to restructure software by applying a series of refactorings

without changing its observable behavior [1].

Both of these definitions emphasize the two main conditions in evaluating the

effectiveness of a refactoring. The first condition is that the refactoring improves a

program‟s design and structure. A change made to optimize a program‟s performance

may require many changes, but might actually make the code harder to understand and

thus does not qualify as a refactoring [1]. The second condition ensures that after the

refactoring is complete, the program retains its observable behavior and provides the

same functionality as it did before the refactoring.

 It is a generally accepted fact within the software community that the time spent

maintaining software constitutes a large portion of the total cost of software production. It

is rarely the case that the initial design of a software product remains unchanged as it is

required to handle new customer requirements and is used in ways other than the original

intent. Refactoring provides a technique to address both of these concerns. It decreases

the cost of software maintenance as it creates an environment where changes to software

are easier to make. This environment also allows the program to evolve in ways that were

not foreseen and makes the program more robust.

1.1. Related Work

This project drew extensively from three theses originating from the University of

Illinois at Urbana-Champaign. This section gives an overview of each of these theses

and describers their relevance to this project.

 2

 The first major doctoral thesis to address refactoring was William Opdyke‟s

“Refactoring Object-Oriented Frameworks” [2]. Opdyke provided formal definitions for

many major refactorings that form the basis for refactoring literature today. His other

major contribution was in defining several program properties that must be preserved

during refactoring in order to ensure that program behavior does not change. Along with

these program properties, he also enumerated the possible program domains that can be

affected during a refactoring. Using these properties and domains, he then created formal

functions that could be used to verify that necessary preconditions would be satisfied

before performing a given refactoring. A violation of one of these preconditions would

result in a potential change to program behavior, thus making the refactoring invalid. For

example, when changing the name of a class member variable, it is necessary to ensure

that the new variable name does not conflict with an existing variable name. This check

includes analyzing the names of both inherited class member variables and global

variables.

 The next major paper in the refactoring literature is Donald Roberts‟ thesis

“Practical Analysis for Refactoring” [3]. Roberts extended Opdyke‟s previous work by

creating the Refactoring Browser for programs written in Smalltalk. This application

automated the refactoring process by checking refactoring preconditions and updating the

source code to reflect the output of the refactoring. Roberts also defined several criteria

that determine both the technical and practical success of an automated refactoring tool.

 Finally, Alejandra Garrido‟s thesis entitled “Program Refactoring in the Presence

of Preprocessor Directives” [4], analyzed the difficulties of implementing an automated

tool for programs written in C. Her thesis resulted in the implementation of CRefactory,

an automated refactoring tool for C. She also contributed several important algorithms

used in this project, namely how to process preprocessor directives when refactoring C++

code.

 1.2. Project Goals

The original goal of this project was to build on the previous contributions to the

refactoring literature by creating a refactoring tool for C++ programs. The program

would provide a set of refactorings that would allow C++ developers to quickly and

 3

easily modify their code in several ways. The tool would function much like an IDE and

allow users to select portions of the code to refactor.

After more research into the project idea, it was decided that such a tool would be

beyond the scope of the degree requirements. Therefore, the project goal was refined to

implement a prototype of such a tool, verifying that refactorings for C++ were possible

and implementing a framework into which future refactorings could easily be developed

and tested. Most of the GUI requirements were eliminated to make sure more time was

spent on the underlying refactoring functionality.

 4

2. Requirements

The following section provides an overview of the process used to gather

requirements for the Automated Refactoring Tool (ART). A waterfall process was used

as the software development model throughout the project. Because of this choice, the

developer expended significant effort during the requirements phase to review the

existing literature and determine what was possible and to understand the work that had

previously been completed. Although this approach may have prevented the developer

from implementing more functionality in the final product, it did prevent the developer

from straying down a wrong path ending in a dead-end.

The original sponsor for this project was Firstlogic, Inc. The project itself was the

idea of the developer and was not a request for software from the sponsor. The sponsors

at Firstlogic understood that the project was more like a research project and were not

concerned with obtaining a final product to be used within the company. Therefore, the

developer was free to determine the essential requirements for the project. These

requirements were also reviewed and approved by the project supervisor.

In his doctoral thesis [3], Don Roberts provides two categories of criteria that an

automated refactoring tool must pass. The requirements for this project attempted to

conform to both the technical and practical criteria noted by Roberts and listed below.

 Technical Criteria

o The tool must maintain a program database that can be searched for

various program entities across the entire program.

o The tool must maintain an Abstract Syntax Tree (AST) to allow the

manipulation of the source code.

o The tool must provide a reasonable assurance that it preserves program

behavior.

 Practical Criteria

o The analysis and transformation of the code must happen in an amount of

time that is acceptable to a developer. Otherwise they will just perform the

refactoring manually.

 5

o The tool must support an “Undo” function to allow developers to revert a

refactoring that does not result in the expected benefits of the refactoring.

o The tool must be integrated within the programmer‟s Integrated

Development Environment (IDE).

For this project, the developer was more concerned with the technical criteria than in

providing a practical tool for everyday use. Although “Undo” functionality was included

in the original requirements, it had a low priority and was never implemented. Also, ART

was always intended to be a stand-alone tool since integration into a third-party IDE was

beyond the scope of this project.

A requirements document was generated that listed 48 requirements of which 31 were

categorized as functional requirements and 17 categorized as GUI requirements. The

document was created solely by the developer after an extensive literature review and

received approval from both the project sponsor and the project supervisor. An overview

of the requirements document is given in the following section. The original requirements

document was not altered after its initial creation.

2.1. Functional Requirements

2.1.1. Refactoring Support Requirements

These requirements were intended to provide lower-level support to the high-level

refactorings available to the user. The requirements were as follows:

Requirement # Requirement Name Requirement Description

3.1.1 Find Variable

References

Find all references to a variable within the

source program.

3.1.2 Find Function Calls Find all calls to a function within the source

program.

3.1.3 Find Variable Name

Conflicts

Determine if renaming a variable will result

in a name conflict with existing variable

declarations.

3.1.4 Save Refactoring Save the input to a refactoring, which could

 6

Information be used to “Undo” the refactoring at a later

time.

3.1.5 Undo Refactoring Revert the changes that were made by a

refactoring.

3.1.6 Report Unsatisfied

Precondition

Check to make sure that a refactoring‟s

preconditions are satisfied before performing

the refactoring.

Table 2.1. Refactoring Support Requirements

The final program did not include requirements 3.1.4 and 3.1.5. Also, although a

refactoring‟s preconditions were checked before performing the refactoring, the

preconditions that were checked were not exhaustive.

2.1.2. Implicit Refactoring Requirements

These requirements consisted of smaller refactorings needed to implement the

higher-level refactorings available to the user. For instance, to encapsulate a variable, it is

necessary to change the access control mode of the variable, create member functions and

convert all variable references to access function calls. The requirements were as follows:

Requirement # Requirement Name Requirement Description

3.2.1 Change Access

Control Mode

Change the access control mode (e.g. public

to private) of a class member variable.

3.2.2 Create Member

Function

Create a new member function within a class.

3.2.3 Remove Member

Function

Remove an existing member function from a

class.

3.2.4 Convert Variable

References to Access

Function Calls

Used within the Encapsulate Function

refactoring. Updates all references to a

variable to a call to a setx or a getx based on

whether the reference was a read/write

 7

reference.

3.2.5 Convert Access

Function Calls to

Variable References

The inverse of function 3.2.4.

3.2.6 Inline Function Call Replace a call to a function with the code

contained within the function.

3.2.7 Move Member

Variable to

Subclasses

Moves a member variable declared in a

subclass to a declaration in each of its

subclasses.

Table 2.2. Implicit Refactoring Requirements

The final program did not include requirements 3.2.3, 3.2.5, 3.2.6 and 3.2.7. Each of

these requirements was needed to implement “Undo” functionality for some of the

higher-level refactorings. Since “Undo” functionality was not implemented, these

requirements were no longer necessary.

2.1.3. Explicit Refactoring Requirements

These requirements were the planned refactorings that would be automated and

available to a user of ART. The following refactorings were chosen for implementation:

Requirement # Requirement Name Requirement Description

3.3.1 Encapsulate Variable Make a public variable private, provide

public access functions to the variable and

update all references to the variable with calls

to the access functions.

3.3.2 Rename Variable Rename a variable, updating its declaration

and all of its references with the new variable

name.

3.3.3 Rename Member

Function

Rename a class member function, updating

its declaration and all calls to the function

 8

with the new function name.

3.3.4 Extract Function Extract a portion of code into its own

function and replace it with a call to the

function.

3.3.5 Decompose

Conditional

Extract a complex conditional expression into

its own function and replace it with a call to

the function.

3.3.6 Move Member

Variable to

Superclass

Replace duplicate declarations of a variable

within multiple subclasses, with one variable

declaration in their common superclass.

Table 2.3. Explicit Refactoring Requirements

The final program included the first three requirements from this table. After consultation

with the project sponsor and supervisor, the remaining refactorings were omitted from the

final implementation.

2.1.4. Project Requirements

 These requirements were intended to cover the concept of a “project” within the

ART program and were as follows:

Requirement # Requirement Name Requirement Description

3.4.1 Extract Source File

Information

The original requirement was to extract

source file information from a Microsoft

Visual Studio™ project file.

3.3.2 Extract Include Path

Information

The original requirement was to extract

include path information from a Microsoft

Visual Studio™ project file.

Table 2.4. Project Requirements

 9

The final program did not work with Microsoft Visual Studio™ programs. The first

requirement was satisfied by finding all source files underneath a given file system

directory. At this time, the program does not work with any include path information.

2.1.5. Preprocessor Requirements

 These requirements covered all of the functionality dealing with the preprocessor

needed for an automated refactoring program and were as follows:

Requirement # Requirement Name Requirement Description

3.5.1 Process Include

Directives

The preprocessor must handle #include

directives appropriately in the context of an

automated refactoring program.

3.5.2 Process Macro

Definitions

The preprocessor must handle macro

definitions and expansions appropriately in

the context of an automated refactoring

program.

3.5.3 Process Conditional

Directives

The preprocessor must handle conditional

directives appropriately in the context of an

automated refactoring program.

3.5.4 Preserve White Space The preprocessor must preserve the original

white space of a program after a refactoring

occurs.

3.5.5 Preserve Comments The preprocessor must preserve the

comments in a program after a refactoring

occurs.

Table 2.5. Preprocessor Requirements

Each of the requirements in this section were at least partially fulfilled in the final

program. See Section 3.1 for further details.

 10

2.1.6. Parser Requirements

 These requirements covered all of the functionality dealing with the C++ parser

needed for an automated refactoring tool and were as follows:

Requirement # Requirement Name Requirement Description

3.6.1 Report Parsing Errors The parser must report any parsing errors that

occur

3.6.2 Parse Complete C++

Programs/Libraries

The parser should be able to parse any library

or executable program written in C++.

3.6.3 Parse Code

Fragments

This requirement was intended to make sure

the user selected a set of valid C++

statements when performing the Extract

Function refactoring.

3.6.4 Save Parse

Information

This requirement was intended to save parse

information between program sessions to

save work reparsing a program.

3.6.5 Output Program Output a parsed program to disk.

Table 2.6. Parser Requirements

2.2. Technical Difficulties and Risk Analysis

The first major obstacle in developing an automated refactoring tool for C++

programs is the presence of a preprocessor. Preprocessing directives provide three major

challenges that must be handled with functionality that differs from typical preprocessing

behavior:

 #include directives must not destroy the modularity a programmer depends

on when separating source code into separate files.

 Conditional directives (e.g. #ifdef, #ifndef) must not eliminate code that may

break when program elements from other parts of the program are refactored.

It is also important to be able to reproduce all branches of a conditional

directive in order to reproduce the original program that existed before

preprocessing occurred.

 11

 Macro definitions must be updated to reflect refactorings that occur on

program elements used in the macro definitions. Also, macros may have

multiple definitions when defined in different conditional directives. These

definitions must be preserved for the same reason as the second bullet point

listed above.

These issues and their potential solutions are described in much greater detail in Section

3.1.

The next major obstacle in development of such a tool is the requirement to

implement a parser for the C++ language. C++ has a very large and complex grammar,

made even more difficult to parse because semantic information is required to make a

correct parse. The website at [5] provides a good overview of the difficulties of parsing

C++ and provides links to several approaches that have been taken over the years.

Finally, the complexity of the C++ language makes it difficult to ensure a refactoring

can preserve the behavior of a program. For instance, “Move Member Variable to

Superclass” is a common refactoring that consolidates a duplicate declaration of a

variable within two subclasses to one declaration in a common parent class. However,

this refactoring would change the memory footprint of any object that had a type of those

affected by the refactoring. Although it would be considered bad programming style, a

developer could access a member variable of such an object by pointer arithmetic.

Because the offsets of the member variables may have been affected by the refactoring,

the refactoring may have broken expected behavior and introduced a bug in the program

[1].

2.3. GUI Requirements

The GUI requirements were developed in order to provide a user of ART with a simple

interface that would make it easy to refactor portions of a source program. In general, the

GUI was intended to look like a typical IDE without the ability to edit source-code

“documents.” Instead, the user would be able to select portions of a source program to

refactor.

 12

Figure 2.1. Original GUI Prototype

The GUI Requirements were broken into categories based on each component

contained within the GUI.

GUI Component Requirement Description

Main Window The Main Window provided a container to hold all of the other

GUI components.

Menu Bar The Menu Bar was intended to provide menus for the user to

initiate much of the functionality available in the program.

File Menu The File Menu was intended to provide the following menu

items:

 “Open Project…” would open a project file for the ART

program.

 “Close Project” would close the current open project.

 13

 “Save” would save any refactorings that had been

performed and output the modified source program.

 “Exit” would close the program.

Refactor Menu The Refactor Menu was intended to provide the following menu

items, each of which would perform the corresponding

refactoring based on the code selected by the user:

 “Encapsulate Variable…”

 “Rename Variable…”

 “Rename Member Function…”

 “Extract Function…”

 “Decompose Conditional…”

 “Move Member Variable to Superclass…”

 “Undo Refactoring…”

About Menu The About Menu was intended to provide a single menu item to

provide information about the ART program.

File Navigator Panel The File Navigator Panel was intended to display the source

files contained in the source program and allow the user to open

these files.

Output Panel The Output Panel was intended to provide status/output

messages for actions that occurred (e.g. parsing, parsing errors)

in the ART program.

Display Panel The Display Panel was intended to display source file contents

and allow the user to select portions of code to refactor.

Table 2.7. GUI Requirements

 14

3. Design

This section provides a brief overview of the design of each ART program

component. More details are given in Section 5.

3.1. Preprocessor
 After some initial research, the developer decided to use the Wave library [6]

provided within the Boost Framework [7]. The Boost Wave library is a Standards

conformant, and highly configurable implementation of the mandated C99/C++

preprocessor functionality hidden behind an easy to use iterator interface [8]. This library

was essential to the project as it provided a solid foundation for preprocessing

functionality. Without this library, the developer may have been required to build a

complete preprocessor from scratch, which would have been beyond the scope of the

project. The developer was able to modify and extend the Wave library to implement

much of the functionality needed for a preprocessor within the context of an automated

refactoring tool.

 Figure 3.1. shows the initial UML class diagram that served as the design for the

preprocessor.

 15

Figure 3.1. UML Class Diagram for a Preprocessor

The Preprocessor class provided the main functionality for the overall

preprocessing. At construction, the Preprocessor takes an object of type Program

(explained in Section 3.2.). The Preprocessor iterates over all of the source files that are

contained in the Program object, preprocessing each source file and creating a list of

preprocessing tokens for the source file. Internally, the Preprocessor class uses a context

class provided by the Wave library to preprocess each source file.

 The diagram also shows several classes, ConditionalDescriptor and

AbstractCondition and its descendents, that are used to provide special preprocessing

 16

functionality needed for a refactoring tool. The purpose of these classes is discussed

further in Section 5.

The classes in this diagram with a “wave::util::” prefix were classes that existed in the

Wave preprocessor and were reused by the developer. However, the developer did have

to update the internal functionality of these classes to implement the special

preprocessing functionality needed in the context of an automated refactoring tool (see

Section 5).

3.2. Parser

Given the complexity of C++, an open source or third party parsing library was

sought for use on this project. The Spirit parser, part of the Boost Framework was

considered but not adopted due to the anticipated steep learning curve. The well known

Lex/Yacc system was also considered but rejected since it was unclear whether it could

fully support the needs of this project to maintaining whitespace significance and

construct explicit abstract syntax trees for dynamic manipulation. The decision was

eventually made to write a customized recursive descent parser.

 17

Figure 3.2. UML Class Diagram for a Parser

After careful consideration, the developer decided against using the Spirit parser as

it would have required much effort to gain a very good understanding of the library, a

task that would have taken a great deal of time. In the end, the developer decided to write

a recursive descent parser as this technique is straight-forward and did not require a large

learning curve. To implement the parser, the developer created classes for each of the

grammar rules and grammar constructs that were implemented in ART. A Parser class

exists that defines a “parseX” function for each of the implemented grammar constructs.

Each function parses the particular corresponding construct of the grammar. The

developer utilized the extended C++ grammar developed by Edward Willink in his thesis

“Meta-Compilation for C++” [10]. The use of this grammar instead of the official C++

grammar resulted in a simplified parser and eliminated the need for contextual

information while parsing.

 18

Many of the concepts from the UML diagram in Figure 3.2 were still used during

the implementation of ART. A ProgramDatabase class was designed that stores all of the

program elements defined in the program. These elements are contained within a Scope

class, which is used to delineate each scope defined in the program. The existence of

scopes allows the ART program to do some basic contextual processing to ensure that the

source program does not have duplicate declarations of a variable within a scope. It also

allows the ART program to ensure that refactorings affecting a variable at a certain

scope, do not affect variables with the same name defined in a different scope.

To handle the source files contained in the source program, the following UML

class diagram was created:

Figure 3.3. UML Class Diagram for a Program

The Program class holds a list of the source files within the source program that is

being refactored, an include dependencies graph for the source program and the program

database for the source program. Each file is represented by a SourceFile class that

contains both the file‟s list of preprocessing tokens and the file‟s AST that is formed

during parsing.

 19

3.3. Refactoring Engine

 The initial design of the refactoring engine resulted in the following UML class

diagram:

Figure 3.4. UML Class Diagram for a Refactoring Engine

Each refactoring was intended to have its own class that would perform the necessary

modifications on the source program and output the code.

However, the refactoring engine was designed using several classes that

implement the Visitor Pattern [11]. There are a total of five concrete classes along with a

base class that implement this functionality. The base ASTVisitor class defines a “visitX”

function for each of the implemented grammar constructs. Each function visits a node in

the AST that corresponds to the particular construct of the grammar, performing any

actions needed to implement the refactoring engine. Table 3.1. lists each visitor class and

its responsibility:

ASTProgramDbVisitor This class visits each node of the

AST, creating entries in the program

 20

database for each program element

defined in the program.

ASTRenameVariableVisitor This class visits each node of the

AST, renaming any references of a

variable that is being renamed.

ASTEncapsulateVariablePrinterVisitor This class is responsible for creating

the get/set functions created during

an “Encapsulate Variable”

refactoring.

ASTEncapsulateVariableReferenceUpdaterVisitor This class is responsible for updating

each reference to a variable being

encapsulated with the appropriate

get/set function.

ASTPrinterVisitor This class visits each node printing

out the terminal tokens to a file and

is used to output a program after a

refactoring occurs.

Table 3.1. Visitor Classes Used to Implement a Refactoring Engine

 21

4. Implementation and Testing

The implementation and testing phase consisted of transforming the requirements

and design into code. The developer first focused on extending the Wave preprocessor to

implement the functionality needed for a preprocessor within the context of an automated

refactoring system. In retrospect, the developer spent too much time in this phase, which

negatively affected the time spent on more important functionality such as the parser and

refactoring engine. This mistake limited the amount of functionality in the final tool.

 Testing was utilized throughout the project and was automated as much as

possible. Using the unit testing framework provided by the Boost Framework, the

developer implemented eleven different test suites to verify the correctness of the

program. These tests were mainly black box tests used in testing the parser and

preprocessor. For the preprocessor, each test would take in a source file and verify the

correct output of the preprocessor by checking the tokens it produced. For the parser,

each test would take in a source file and verify the state of the program database that was

created. These tests also served as regression tests to ensure that changes to the code did

not break existing functionality.

The developer also created a small test application that displayed a parse tree

formed by the parser functionality in ART. This application helped the developer to

diagnose problems within the parser. A screenshot of this application appears below:

 22

Figure 4.1. AST Display Application

 23

5. Description of Refactoring with ART

This section provides a detailed description of the three main components of the ART

application.

5.1. Preprocessor

As previously mentioned, the developer used the Wave preprocessor as the starting

point for the preprocessor and extended its functionality to make it suitable for an

automated refactoring tool.

5.1.1. Conditional Directives

Conditional directives introduce significant complexity when developing a automated

refactoring tool. The normal behavior of a preprocessor is to process only those branches

that fall within conditional branches that evaluate to true. Since, however, the observable

behavior of the source code must remain unchanged regardless of the target platform,

refactoring must take into account all branches within a conditional directive.

The first problem occurs when a conditional branch evaluates to false causing the

preprocessor to ignore the program tokens. In this example from [4], a conditional

directive is used to provide two different definitions for a typedef declaration:

#if __STDC__

typedef void* pointer;

#else

typedef char* pointer;

#endif

Figure 5.1. Sample of Multiple Declarations of a Program Element

Assuming the program was being processed with the __STDC__ symbol defined, the

normal preprocessing behavior would eliminate the second declaration. However, if such

behavior was preserved in a refactoring tool and the user performed a rename refactoring

on the remaining declaration, the declaration that was eliminated would remain

unchanged. If the program was then compiled with the __STDC__ symbol undefined,

 24

compiler errors would result everywhere pointer was updated with the new name used in

the refactoring.

 A refactoring tool must also preserve all conditional branches to preserve the

contents of the original program after a refactoring occurs. If the preprocessor ignores the

tokens of conditional branches that evaluate to false, these portions of the program would

be lost when the program is written back to disk.

The solution, outlined in [4], is to process every conditional branch as if it evaluates

to true. To implement this functionality, it is first necessary to label each preprocessing

token with a label that represents the current condition in the program. Using the code in

Figure 5.1. as an example, the tokens in the first typedef declaration would be labeled

with the logical condition __STDC__. The tokens in the second typedef declaration

would be labeled with the logical condition !__STDC__, where the “!” symbol stands for

the logical negation operator. In this way, both declarations can exist within the same

program since they are differentiated by the conditional label that is attached to them.

To correctly label preprocessing tokens, the preprocessor must implement a “Current

Condition Stack” [4]. As the preprocessor processes program tokens, it maintains a stack

that keeps track of the current program condition. In the program example above, the

preprocessor would take the following actions:

 When processing the line “#if __STDC__”, the preprocessor would push the

logical condition __STDC__ onto the top of the stack.

 When processing the line “#else”, the preprocessor would pop the top of the

stack and push the logical condition !__STDC__ onto the top of the stack.

 When processing the line “#endif”, the preprocessor would pop the top of the

stack leaving it empty.

Each token that the preprocessor processes is labeled with the condition that exists on the

top of the stack.

 Processing all branches of a preprocessing conditional directive allows a

refactoring tool to handle multiple declarations of program elements. However, it also

introduces the possibility of a new problem. Conditional directives allow for the

possibility of incomplete syntactic units within a conditional branch. The code in Figure

 25

5.2. shows an example where processing each branch of code would result in a parsing

error since the tokens “for (“ are only available for the first branch of the conditional:

for (

#if BY_ROW

 i=0; i<R; i++)

 s+=a[i];

#elif BY_COL

 j=0; j<C; j++)

 s+=a[j];

#endif

Figure 5.2. Sample of an Incomplete Syntactic Construct

The solution to this problem, provided in [4], is to implement a “Conditional

Completion Algorithm.” This algorithm updates the token stream so that each conditional

branch contains a complete syntactical construct. Complete syntactic constructs were

defined as the following C grammar constructs in [4]:

 Statement

 Declaration

 Structure field

 Enumerator field

 Array initializer value.

When processing the code in Figure 5.2., the Conditional Completion Algorithm would

modify the source code to that of Figure 5.3.

#if BY_ROW

 for (i=0; i<R; i++)

 s+=a[i];

#elif BY_COL

 for (j=0; j<C; j++)

 s+=a[j];

#endif

Figure 5.3. Sample of a Fixed Incomplete Syntactic Construct

 26

By adding the “for (“ tokens to each branch, the preprocessor ensures that each branch

contains a complete syntactical construct as defined by the C++ grammar and will not

cause a parsing error.

To implement the Conditional Completion Algorithm, the preprocessor works in

two passes through the source program [4]. The first pass inserts tokens into the token

stream to mark where incomplete syntactic constructs occur. The second pass through the

code reorganizes program tokens based on the previously inserted markers to ensure that

each branch contains a complete syntactical construct.

 To determine the existence of incomplete syntactic constructs, the preprocessor

keeps track of its state with regard to parsing the constructs listed above. For example,

while parsing the for statement in Figure 5.3., the preprocessor is aware that its current

state at the point of the #if directive is not a valid state for a preprocessing directive to

occur. The preprocessor then inserts a special token into the source program marking the

beginning of an invalid preprocessing conditional directive that will need to be fixed

during the second pass of the preprocessor.

To implement the state awareness functionality, the developer used a hash map

that mapped certain key tokens (e.g. for, enum, etc…) to a structure that contained the

following items:

 The state to transition to after processing the token.

 A function that served as a precondition that had to be checked before

transitioning to the new state.

 A vector of function pointers representing the actions to take to transition to

the new state.

For example, the for token has the following values in its mapped structure:

 The value IN_FOR representing the new state of parsing a for statement.

 A function representing a TRUE condition as a for token always results in a

transition to the IN_FOR state.

 A list of two function pointers that do the following:

o Push the IN_FOR state onto the top of the state stack.

o Reset a variable that tracks the number of open parentheses for the

current for statement.

 27

After the first pass of the preprocessor is complete, the preprocessor rescans the

token stream looking for the special tokens that signal a bad conditional directive.

Each of the marker tokens contains information about the construct that enables the

preprocessor to correctly modify the token stream. The information consists of the

following:

 A flag indicating the preprocessing conditional has a bad start.

 A flag indicating the preprocessing conditional has a bad ending.

 The start position of the preprocessing conditional directive.

 The end position of the preprocessing conditional directive.

 The position at which the start of the conditional should be.

 The position at which the end of the conditional should be.

 A list of tokens that need to be inserted at the start of the conditional branches

in order to make them complete.

 A list of tokens that need to be inserted at the end of the conditional branches

in order to make them complete.

This information allows the conditional completion algorithm to rearrange the program

tokens to ensure that each branch of a conditional directive contains a complete syntactic

construct from the constructs listed above.

5.1.2. Macros

To handle macro definitions within an automated refactoring tool, it is necessary

to implement special functionality for both macro definitions and macro expansion.

Macro definitions are stored in a macro definition table. A normal macro table

would only allow one definition for a macro at any given time. However, because the

ART must process all branches of preprocessing conditional directives, the macro

definition table must be able to handle multiple definitions of the same macro.

 28

#ifdef LARGE_CLASS_SIZES

 #define CLASS_SIZE = 50

#else

 #define CLASS_SIZE = 25

#endif

Figure 5.3. Example of a Macro with Multiple Definitions

In the case of Figure 5.3., the macro definition table must store both of the definitions for

CLASS_SIZE. This behavior is possible by differentiating each definition by the logical

condition label that was previously explained in Section 5.1.1.

 Because the macro definition table can hold multiple definitions for a given

macro, it becomes necessary to expand a macro call for all of its possible definitions.

Using the macro defined in Figure 5.3. as an example, a call to the macro such as the

following:

int classSize = CLASS_SIZE

Figure 5.4. Call to a Macro With Multiple Definitions

would result in the following code being generated by the preprocessor:

int classSize =

#ifdef LARGE_CLASS_SIZES

 50

#else

 25

#endif

;

Figure 5.5. Expansion of a Macro With Multiple Definitions

This expansion results in an incomplete conditional directive, which the Conditional

Completion Algorithm would fix later on in the preprocessing process.

 It is also necessary to check whether a refactoring on a program element requires

a change within a macro body. If so, the automation functionality must verify that the

 29

macro is not called in a context where the program element has a different definition.

Figure 5.6, taken from [4], shows an example of this situation:

#define ER1 errstatus = 1

int f1() {

 int errstatus

 …

 if (bottom < 0)

 ER1;

 …

}

int main() {

 int errstatus;

 …

 if (input == 0)

 ER1;

 …

}

Figure 5.6. Example of a Macro Called from Two Different Contexts

At each call to the macro ER1, there is a local variable named errStatus, resulting in two

different contexts for the use of this variable. If errStatus is renamed in function f1 the

use of errStatus in the macro definition must also be updated with the new variable name.

However, that would then result in a compiler error in the main function as the macro

expansion for ER1 would result in an undefined variable. Therefore, if a refactoring is

applied to a program element that affects a macro definition, it is necessary to examine all

other calls to that macro and ensure there are no other scopes in which the macro is called

with a different definition for the program element [4]. Otherwise, the refactoring cannot

be performed safely and must be canceled. The developer was not able to include this

functionality in the final program.

5.1.3. Include Directives

When processing include directives, a normal C++ preprocessor does not make any

effort to preserve the modularity created by the programmer in his use of different source

 30

files. Instead, the preprocessor processes include files as a continuation of the current file,

resulting in the different files merged into one long token stream. An automated

refactoring tool however, needs to preserve the modularity of separate source files in

order to present the source code to the user in a readable format. Therefore, the

preprocessor within ART maintains objects for each source file, each of which contain its

program tokens. The file objects are stored within a directed graph, where each directed

edge represents an include dependency. With this representation, it is possible for the

preprocessor to reuse the processed tokens of a source file if it has previously been

included from another source file.

Although the developer implemented functionality to preserve modularity and create

an included dependency graph, no formal testing was done to verify this functionality in

the final program.

5.2. Parser

The parser within the ART is implemented using the familiar technique of a

recursive-descent parser [12]. A separate class exists for each construct in the C++

grammar. The parser has a parseX function that creates an object for each grammar

construct it encounters in the program.

Instead of creating a parser based off of the official C++ grammar, the developer

decided to use the FOG grammar specified in [10]. The FOG grammar is a superset of

C++ and was developed to eliminate the need for contextual information while parsing

C++ programs. This made the implementation of the parser much easier as syntactic

processing and contextual processing did not have to be combined into one step.

 After the program is parsed, the ART creates a program database that contains all

of the elements (e.g. classes, variables, functions, etc…) declared in the program. This

database is created through the use of a class that implements the Visitor Pattern [12].

The visitor travels down the nodes of the AST, creating an entry in the program database

for each program element contained in the tree. The visitor also keeps track of references

to the variables and functions the program declares, by storing the AST nodes that

represent the statements and expressions that contain the references to the program

elements. Finally, the visitor also performs some minimal contextual analysis such as

 31

reporting multiple declarations of a variable that exist within the same scope or reporting

a reference to an undeclared variable. The program database is then used to allow users to

refactor the program elements it contains.

5.3. Refactoring Engine

The refactoring engine is also implemented through several classes them implement

the Visitor pattern.

5.3.1 Rename Variable/Function

The rename variable/function refactoring is used to rename a variable element

within a program and update all references to that variable with the new name. With the

following program listed in Figure 5.7 the ART displays the GUI shown in Figure 5.8:

class aclass1

{

private:

 int a;

public:

 int get_a() const

 {

 return a;

 }

 void set_a(int in_a)

 {

 a = in_a;

 }

 int b;

 bool c;

 bool d;

 int test()

 {

 set_a(5);

 }

}

Figure 5.7. Sample Program for Rename Variable Refactoring

 32

Figure 5.8. GUI Display for Rename Variable Refactoring Sample Program

The user can then select a program element to rename:

Figure 5.9. Renaming a Variable

 33

After entering a new name, new_name, for the variable a, the source code is updated to

that of Figure 5.10 while the GUI is also updated to reflect the change (Figure 5.11).

class aclass1 {

private:

 int new_name;

public:

 int get_a() const

 {

 return new_name;

 }

 void set_a(int in_a)

 {

 new_name = in_a;

 }

public:

 int b;

 bool c;

 bool d;

 int test()

 {

 set_a(5);

 }

}

Figure 5.10. Source Code Results for Rename Variable Refactoring

 34

Figure 5.11. GUI Results for Rename Variable Refactoring

The rename refactoring can rename class variables, function parameters, local variables

and class member functions. If the user selects a name that is already used within the

scope of the program element, the ART will report an error.

 As noted earlier, the ART keeps track of references to variables and functions that

the program declares when creating the program database. To implement the rename

functionality, the ART uses a Visitor pattern that visits the statements and expressions

that contain the references to the variable or function. When the visitor reaches the AST

node representing the program element reference, it updates the node with the new name

chosen by the user. The ART then uses another Visitor that rewrites the updated source

code back to disk.

5.3.2 Encapsulate Variable Refactoring

The Encapsulate Variable refactoring makes a public variable private, creates

get/set functions for the variable and updates all variable references with the appropriate

function. With the following program listed in Figure 5.12 the ART displays the GUI

shown in figure 5.13:

 35

class aclass1 {

public:

 int a;

 int b;

 bool c;

 bool d;

 void testFunction1()

 {

 int z = a;

 z += 3;

 }

 void testFunction2()

 {

 if (b == 3)

 {

 b = a;

 }

 else

 {

 a = 3;

 }

 }

}

Figure 5.12. Sample Program for Encapsulate Variable Refactoring

 36

Figure 5.13. GUI Display for Encapsulate Variable Refactoring

If the user then selects to encapsulate the variable a, the source code is updated to that of

Figure 5.14, while the GUI is also updated to reflect the change (Figure 5.15).

 37

class aclass1 {

private:

 int a;

public:

 int get_a() const

 {

 return a;

 }

 void set_a(int in_a)

 {

 a = in_a;

 }

public:

 int b;

 bool c;

 bool d;

 void testFunction1()

 {

 int z = get_a();

 z = 3;

 }

 void testFunction2()

 {

 if (b == 3)

 {

 b = get_a();

 }

 else

 {

 set_a(3);

 }

 }

}

Figure 5.14. Source Code Results for Encapsulate Variable Refactoring

 38

Figure 5.15. GUI Results for Encapsulate Variable Refactoring

The ART will only allow a user to encapsulate a public variable. If the user attempts to

perform the Encapsulate Variable refactoring on a protected or private variable, the

program will report an error.

 To implement this functionality, the ART first uses a Visitor pattern that updates

all of the variable references to the appropriate get/set function. During program database

creation, a reference to a variable is marked with a flag indicating whether the reference

is a read-only reference, or if the reference is assigned to. In this way, the visitor class

knows which function to use during the update.

The ART then uses another Visitor pattern that rewrites the program back to disk.

During this operation, the visitor writes out the new declaration of the variable along with

the definitions of the get/set functions. It also skips over the previous declaration of the

variable to remove that declaration from the program. The ART then rereads the updated

program to load all of the changes made by the refactoring.

 39

6. Limitations

The ART provides a good basis for an automated refactoring tool for C++

programs. However, there are several limitations to this tool before it has the potential to

become useful to C++ developers.

The preprocessor used in ART implements only a subset of the possible cases that

arise during the implementation of the Conditional Completion Algorithm1. These cases

as defined in [4] as the following:

 A conditional with a bad start.

 A conditional with a bad ending.

 A conditional with a bad start and a bad ending.

 Two conditionals with the same logical condition that break the same

syntactic construct.

 Two conditionals, the second one breaking an inner statement (e.g. the first

conditional breaks the expression in a „while‟ statement and the second

condition breaks the statements within the „while‟ loop.

 Two overlapping conditionals, the first not having any inner conditionals.

 Two overlapping conditionals, the first having inner conditionals.

The preprocessor developed in ART is able to handle the first two cases. Although some

of the latter cases would likely be very rare in real code, they must be handled to ensure

correctness of programs. Also, although the preprocessor creates an include dependencies

graph, the functionality to handle include directives has not been implemented in any

meaningful way. The ART needs to incorporate #include directives as part of the C++

grammar and provide functionality to open and parse included files. Finally, the macro

processing functionality does not check all contexts in which macros are called and

would not prevent a refactoring in the case where a program element has a different

definition in another context within the program.

Of all of the program components in ART, the parser functionality has the most

limitations. As stated previously, parsing C++ is a difficult task because of the

complexity of the language. Even though the parser handles 114 of the C++ grammar

 40

rules specified in [10], these rules do not cover the entire grammar. The grammar rules

that were implemented include the following C++ constructs:

 Class definitions

 Member variable declarations

 Member function definitions

 Assignment statements

 Assignment expressions(This includes expressions that use arithmetic

operators such as „+‟ and “*‟ and also logical operators such as „&&‟ and

„||‟.

 All major control statements

o if/else statements

o for loops

o while loops

o do/while loops

o switch statement

The parser does not implement some of the more complex features of C++, which

include the following:

 templates

 the „->‟ and „.‟ operators

 memory management (e.g. “new” and “delete”)

 constructors and destructors

 exceptions

The refactoring engine did not implement all of the refactorings specified in the

original requirements. “Extract Function,” “Decompose Conditional,” and “Move

Member Variable to Superclass” were omitted due to their complexity and a lack of time

at the end of the project. The current GUI also would not allow for certain refactorings

such as Extract Function, since it does not display the code to the user.

 41

7. Continuing Work

There are several areas where ART could be expanded if further work is desired.

Though much work has been done with the preprocessor, the Conditional Completion

Algorithm did not implement all of the cases presented in [4]. Although the Include

Dependency Graph is created, no real testing has been done to process multiple source

files and make sure refactoring works across source files. There is also more work that

could be done to ensure that refactorings do not break macro definitions and calls.

The largest area for more work is the parser. More research would be needed into

the FOG grammar developed in [10] to make sure it is a suitable substitute for the official

C++ grammar within a refactoring tool. Another possibility might be to look into the use

of parser generation tools such as lex/yacc to see if they could be utilized to ease the

creation of a parser. However, it would be necessary to verify such tools would be able to

preserve white space and comments that existed in the program.

More refactorings could be included in the refactoring engine along with more

checking of preconditions for the existing refactorings. It would also be necessary to

update the GUI to be more like the original idea of an IDE to allow for refactorings that

require the selection of actual source code from the program.

 42

8. Conclusion

This manuscript describes the basic features of an automated refactoring tool for

programs written in C++. The ART provides initial implementations for much of the

major functionality that would be needed in a complete refactoring tool. The work done

by others in the field of refactoring has also provided important information that must be

included in any tool that supports automated refactoring capabilities.

Although the limitations specified in Section 4 are large enough to prevent the ART

from being a useful tool at this point, this manuscript has shown that a useful automated

refactoring tool for C++ programs is possible. Further work on the preprocessor and the

parser contained in ART would provide a solid foundation to allow more refactorings to

be implemented. Adding more functionality to ensure that the refactoring tool preserves

program behavior, would assure developers that program use is safe and results in better

code.

Ultimately, for the ART to be useful, it would need to be integrated into an existing

C++ IDE. It is highly unlikely that a C++ developer would settle for a tool that must run

separately from the program in which most of his work occurs. Therefore, more work is

needed to explore how the ART could be integrated into other tools that already create

their own program databases and abstract syntax trees.

 43

9. Bibliography

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. “Refactoring: Improving

the Design of Existing Code”, Addison-Wesley, 1999.

[2] W. Opdyke, “Refactoring Object-Oriented Frameworks”, Department of Computer

Science, Diss. University of Illinois at Urbana-Champaign, 1992.

[3] D. Roberts, “Practical Analysis for Refactoring”, Department of Computer Science,

Diss. University of Illinois at Urbana-Champaign, 1999.

[4] A. Garrido, “Program Refactoring in the Presence of Preprocessor Directives”,

Department of Computer Science, Diss. University of Illinois at Urbana-Champaign,

2005.

[5] http://www.nobugs.org/developer/parsingcpp, “Parsing C++”, 2001

[6] http://www.boost.org/doc/libs/1_35_0/libs/wave/index.html, “Wave V1.3”

[7] http://www.boost.org/, “Boost C++ Libraries”

[8] http://www.boost.org/doc/libs/, “Boost C++ Libraries”

[9] http://www.boost.org/doc/libs/1_35_0/libs/spirit/index.html, “Spirit User‟s Guide”

[10] E. Willink, “Meta-Compilation for C++”, Diss. University of Surrey, 2001.

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1994.

[12] D. Watt, D. Brown, Programming Language Processors in Java: Compilers and

Interpreters, Prentice Hall, 2000.

http://www.nobugs.org/developer/parsingcpp
http://www.boost.org/doc/libs/1_35_0/libs/wave/index.html
http://www.boost.org/
http://www.boost.org/doc/libs/
http://www.boost.org/doc/libs/1_35_0/libs/spirit/index.html

